Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available February 3, 2026
-
Abstract This study investigates the impact of initial injection conditions on colloid transport and retention in porous media. Employing both uniform and flux‐weighted distributions for the initial colloid locations, the research explores diverse flow scenarios, ranging from simple Poiseuille flow to more complex geometries. The results underscore the pivotal role the injection mode plays on the shape of colloid retention profiles (RPs), particularly those that display anomalous non‐exponential decay with distance. Broadly, uniform injection yields multi‐exponential profiles, while flux‐weighted injection can lead to nonmonotonic profiles in certain conditions. The study identifies preferential flow paths as a key factor in producing nonmonotonic RPs. Notably, variations in fluid velocity, colloid size, and ionic strength affect attachment rates near the inlet but do not significantly alter the qualitative transition between multi‐exponential and nonmonotonic profiles. The study emphasizes that the chosen injection mode dictates retention profile shapes, highlighting its crucial role in porous media colloid transport. These insights provide a possible partial explanation of previously observed anomalous transport behaviors, urging consideration of injection conditions in interpretations of experiments, where they can be difficult to accurately control and measure with high precision.more » « less
-
Abstract The fate of migrating insects that encounter rainfall in flight is a critical consideration when modelling insect movement, but few field observations of this common phenomenon have ever been collected due to the logistical challenges of witnessing these encounters. Operational cloud radars have been deployed around the world by meteorological agencies to study precipitation physics, and as a byproduct, provide a rich database of insect observations that is freely available to researchers. Although considered unwanted ‘clutter’ by the meteorologists who collect the data, the analysis method presented here enables ecologists to delineate co‐occurring signals from insects and raindrops.We present a method that uses image processing techniques on cloud radar velocity spectra to examine the fate of migrating insects when they encounter precipitation. By analysing velocity spectra, we can distinguish flying insects from falling rain and compare the relative density of insects in flight before, during and after the rainfall. We demonstrate the method on a case of insect migration in Oklahoma, USA.Using this method, we show the first reconstructed images of migrating insect layers in flight during rainfall. Our analysis shows that mild to moderate rainfall diminishes the number of insects aloft but does not cause full termination of migratory flight, as has previously been suggested.We hope this technique will spur further investigations of how changing weather conditions impact insect migration, and enable some of the first of such studies in regions of the world that are underrepresented in the literature.more » « less
An official website of the United States government
